1. **Introduction.** The Omega group of companies, referred to as Omega, is engaged in providing contracted air to air refueling (AAR) services to a variety of receiver aircraft. The Omega group consists of Omega Air, Inc., San Antonio, TX, Omega Aerial Refueling Services, Alexandria, VA, Seven Q Seven, San Antonio, TX, Aero Engines Ireland, Dublin, Ireland and Omega Aviation Services, Dublin and Shannon, Ireland. Omega has four active tanker types, the Omega KC-707A, Omega KC-707B, Omega KC-707C, and the Omega KDC-10/MPTT. Most Omega tanker support is provided through the US Navy so additional information including Navy restrictions can be found in ATP 3.3.4.2 US SRD, Chapter 3, US Navy/US Marine Corps AAR Operations. The Omega tanker designations have been updated from previous ATP-3.3.4.2 SRD versions to more clearly categorize them based on the AAR equipment configuration.

2. **Tanker Aircraft Type.**
 c. **Omega KC-707C.** – See Annex C for details.
 d. **Omega KDC-10/MPTT.** – See Annex D for details.

3. **National AAR Clearance Process.** Normally, Omega Air conducts AAR operations as a Commercial Aircraft Services provider to US Navy. If receiver operator customers would like to utilize the Omega tankers through this mechanism, the US Navy AAR Clearance Process would be applicable. With the necessary flight clearances in place, all US and allied aircraft can conduct AAR operations with the Omega tankers. Non-US customers would need to go through the US Foreign Military Sales (FMS) program or other approved payment mechanisms for the support. Omega can assist with finding and coordinating the best method. If there are any questions about the AAR clearance process, please contact the POC listed in the paragraph below.

4. **AAR POCs.**
 a. **POC for Organizational SRD.**

 Name: Tom Swiderek
 Job Title: President
 Office: Omega Air, Inc.
 Address: 10315 Wetmore Road, San Antonio, TX 78216
 Email: TomSwiderek@omega.aero
 Tel: +1 210 930-4040
 Mobile: +1 813 220-2012
b. **POC for Tanker/Receiver Clearances.**

 Same as for Organizational SRD.

c. **POC for STAN/EVAL.** The initial point of contact for all STAN/EVAL matters.

 Name: John Banitt (Pilot Issues)
 Job Title: Chief Pilot
 Office Responsible: Omega Aerial Refueling Services
 Address: 700 North Fairfax Suite 306, Alexandria, VA 22314
 Email: johnebanitt@omegaairrefueling.com
 Tel: +1 703 549-4774

 Name: Ken McNamara (Flight Engineer Issues)
 Job Title: Chief Flight Engineer
 Office Responsible: Omega Aerial Refueling Services
 Address: 700 North Fairfax Suite 306, Alexandria, VA 22314
 Email: KenMcNamara@omegaairrefueling.com
 Tel: +1 703 549-4774

5. **National SRD Last Updated.**

 30 Sept 2016

6. **National/Organizational Reservations.**

 None.

7. **SIMULTANEOUS EMPLOYMENT MATRIX FOR AAR PLATFORMS**

 See chart on next page.
Simultaneous Employment Matrix for AAR Platforms

<table>
<thead>
<tr>
<th>Color Code:</th>
<th>PERMITTED</th>
<th>SUBJECT TO RESTRICTIONS (Case-by-case basis)</th>
<th>NOT PERMITTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>National/Organizational</td>
<td>Multi-National</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simultaneous AAR whilst carrying Passengers (Pax)</td>
<td>Simultaneous AAR whilst carrying Cargo</td>
<td>Simultaneous AAR whilst carrying Dangerous Goods (DG) Cargo</td>
<td>Simultaneous AAR whilst carrying Aeromedical Evacuation (AE)</td>
</tr>
</tbody>
</table>

Omega Air's Tanker capability
Tanker Information

Formerly referred to as KC-707/TT.

Applicable FAA Registration Numbers: N707MQ.

Four wing-mounted Pratt & Whitney JT3D-3B engines power the aircraft. Maximum takeoff weight is 333,600 lb. with a maximum fuel load of 159,829 lb. Maximum landing weight is 247,000 lb. Communications equipment includes UHF, HF, VHF radios and satellite phone. The aircraft is also equipped with a Traffic Collision Avoidance System (TCAS) to assist with aircraft separation during air to air refueling (AAR) operations. The tanker is equipped with two AAR hose reel systems located in the lower aft fuselage. This redundant hose-drogue AAR system is internally mounted on the aircraft centerline within a pressurized compartment.

Figure A-1 Omega KC-707A preparing for contact with X-47B
1. **AAR Equipment.**

 The AAR system is comprised of two independent Sargent Fletcher FR300T refueling systems. Each system includes a 93-ft long hose. In full trail position, the hose extends about 80 ft. from the point at which it exits the aircraft to the drogue tip. The white refueling hoses have black markings that designate the refueling range and provide hose movement cues. The two hose reels are installed side-by-side and cannot be used simultaneously. The reels are hydraulically powered and operate independently, allowing for a truly redundant capability. Two J.C. Carter fuel transfer pumps per hose reel system provide fuel flow of up to 400 gallons per minute. Two in-line regulators provide fuel pressure regulation and surge suppression within the MA-4 couplings (50 ± 5 psi) from 0 to maximum fuel flow. The reels are controlled by a reel operator through a cockpit-mounted control panel that provides video coverage of the AAR area aft of the Omega 707 tanker.

2. **Refueling Altitude/Level and Speeds.**

 The AAR flight operations envelop is 5,000 ft. AGL - FL300 at 200-325 KIAS and FL300 – FL350 at 250 KIAS – 0.8M.

3. **Maximum Transferable Fuel.**

 The maximum fuel load is approximately 72,121 kg (159,000 lb.). Transferable fuel is dependent on sortie duration, cargo/personnel on board and takeoff conditions. A representative offload of 35,473 kg (76,000 lb.) is available for a 5 hr. flight, assuming a fuel burn rate of 6,109 kg/hr. (13,467 lb./hr.) and allowing for tanker IFR fuel reserves. With tanker wing flaps extended to 14 degrees, the fuel burn can be as high as 8,618 kg/hr. (19,000 lb./hr.).

4. **AAR Fuel transfer rate.**

 The fuel transfer rate is approximately 1,215 kg/2,680 lb./400 gallons per min for either refueling system but depends on the receiver capacity to take on fuel.

5. **Regulated Fuel Pressure.**

 Fuel pressure is regulated at the drogue’s MA-4 coupling to 50 ± 5 psi.

6. **Fuel Types Available for AAR:**

7. **Lighting.**

AAR status lights are mounted 6 ft. aft of the hose exit point on the aircraft centerline. The lights signal the following to the receiver pilot:

Prior to contact

- **Steady Red**: Do not make contact.
- **Amber**: Tanker ready for contact.

Following contact

- **Green**: Fuel is flowing from the hose reel to the receiver.
- **Amber**: Hose is not within designated refueling range (no fuel flow).
- **Flashing/Steady Red**: Breakaway.

Aircraft undersurfaces are illuminated by floodlights. The drogue canopy is fitted with luminous light sources.

Expanded view of Omega KC-707A and KC-707C centerline AAR Status Lights. All light colors are shown as illuminated & enhanced to show relative display position.

Figure A-2
8. **Mark facilities.**

Aircraft are fitted with red and green rotating beacons, navigation lights, wing tip formation lights, underbelly lights and logo lights.

![Diagram of aircraft lighting and markings](image1)

![Diagram of aircraft lighting and hose markings](image2)
9. **RV aids.**

The aircraft has the following radio, navigation and RV aids:

a. VHF, UHF, HF radios and satellite phone.

b. GPS, VOR, DME, ADF and TACAN.

c. A/A TACAN, TCAS

10. **Fuel Load (at ISA).**

A max fuel load of approximately 150,000 lb. can be expected at ISA with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

11. **Fuel Load (at ISA + 10 deg C).**

A max fuel load of approximately 145,000 lb. can be expected at ISA + 10 degrees C with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

12. **Average Fuel Burn Rate** –

 14,000 lb. per hour for planning purposes.

13. **Nominal Average Reserve**

 10,000 lb. fuel reserves.

14. **Hose Markings.**

The Omega KC-707A centerline hoses are designed to provide maximum contrast and visibility to aid the receiver pilot in all flight conditions. The hoses are white with four 12-inch black bands marked spaced at 3 m (10 ft.) intervals. The 20 ft. fuel transfer range is further clarified with additional small black bands marked at 2 ft. intervals. These smaller markings are designed to aid the receiver pilot in detecting small movements inward or outward while in the fuel transfer range.

At the Preset Trail hose position, the hose will be fully extended to its maximum normal length. There is a 12-inch black band that may be visible in the exit tube when the hose is at the Preset Trail position. If this black band is fully visible to the receiver (including some or all of the white band further up the hose), this means the hose is extended further than normal. The receiver should stop refueling operations and query the tanker crew. If the red and white striped Extreme Trail Marking Bands are visible, receivers are to remain clear of the refueling hose and not attempt any refueling operations on that system. If the
Extreme Trail Marking Bands become visible during refueling, the receiver should immediately disconnect, back out and remain clear of the refueling hose. The redundant centerline system design permits the second hose reel to be used anytime the first one encounters problems such as these.

15. **Dimensions.**
Tanker Information

Applicable FAA Registration Numbers: N623RH and N624RH. Formerly referred to as B707-338C.

Four wing-mounted Pratt & Whitney JT3D-3B engines power the aircraft. Maximum takeoff weight is 333,600 lb. with a maximum fuel load of 159,829 lb. Maximum landing weight is 247,000 lb. Communications equipment includes UHF, HF, VHF radios and satellite phone and TCAS. The tankers are equipped with two under wing mounted refueling pods.

1. AAR Equipment.

The Omega KC-707B tanker has 2 wing mounted Flight Refueling MK32B-501 AAR pods installed approximately 10 ft. from each wing tip. Each AAR pod has a 49.5 ft. hose and an MA-3 coupling. To achieve fuel flow after making contact, the hose must be pushed in 5 ft. and maintained within the refueling range.

2. Refueling Altitude/Level and Speeds.

The AAR flight operations envelop is 5,000 ft. AGL - FL350 at 250-325 KIAS.
3. **Maximum Transferable Fuel.**

The maximum fuel load is approximately 72,121 kg (159,000 lb.). Transferable fuel is dependent on sortie duration, cargo/personnel on board and takeoff conditions. A representative offload of 35,473 kg (76,000 lb.) is available for a 5 hr. flight, assuming an average fuel burn rate of 6,109 kg/hr. (13,467 lb./hr.) and allowing for tanker IFR fuel reserves. With tanker wing flaps extended to 14 degrees, the fuel burn can be as high as 8,618 kg/hr. (19,000 lb./hr.).

4. **AAR Fuel transfer rate.**

The fuel transfer rate is 1,215 kg/2,680 lb./400 gal/min on each wing. This can be accomplished simultaneously for a total of 800 gal/min with two receivers.

5. **Regulated Fuel Pressure.**

Fuel pressure is regulated at the drogue’s MA-3 coupling to 50 ± 5 psi.

6. **Fuel Types Available for AAR:**

7. **Lighting.**

AAR signal lights are located at the base of the pod tunnel and consist of 2 each (one for redundancy) red, amber and green lights. Light signals are as follows:

- **Steady Red**: Do not make contact or, if in contact, remain in contact and await further instructions.

- **Steady Amber**: Tanker ready for contact.

- **No Lights**: If not in contact: do not make contact. If in contact and within the refueling range: fuel either not flowing or flowing at less than 50 gal/min. (Note. This is a normal indication for dry contacts).

- **Steady Green**: Fuel flowing > 50 gal/min. (Note. Green light may flash on/off when topped off indicating fuel transfer = fuel burn).

- **Flashing Amber**: Hose pushed in < 25 ft. from the fully stowed position. (Note. Fuel transfer will cease if the hose is pushed in further than 23 ft. from the fully stowed position).
Flashing Red Disconnect and move to echelon left. (Note. If the red pod light is accompanied by the illumination of the tanker’s lower beacon, breakaway and move to nearest echelon).

The drogue canopy is fitted with 4 small lights and reflective tape.

Infra-red flood lighting is available upon request.

8. **Mark facilities.**

Aircraft are fitted with red and green rotating beacons, navigation lights, wing tip formation lights, underbelly lights and logo lights.

9. **RV aids.**

The aircraft has the following radio, navigation and RV aids:

a. VHF, UHF, HF radios and satellite phone.

b. GPS, VOR, DME, ADF and TACAN.

c. A/A TACAN, TCAS

10. **Fuel Load (at ISA)**

A max fuel load of approximately 150,000 lb. can be expected at ISA with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

11. **Fuel Load (at ISA + 10 degrees C)**

A max fuel load of approximately 145,000 lb. can be expected at ISA + 10 degrees C with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.
12. **Average Fuel Burn Rate**

 14,000 lb. per hour for planning purposes.

13. **Nominal Average Reserve**

 10,000 lb. fuel reserves.

14. **Dimensions**
15. **Hose Markings.**

The Omega KC-707B wing pods have 49.5 ft. black AAR hoses with white markings.

![Diagram showing hose markings and dimensions.]

Figure B-4
Tanker Information

Four wing-mounted Pratt & Whitney JT3D-3B engines power the aircraft. Maximum takeoff weight is 333,600 lb. with a maximum fuel load of 159,829 lb. Maximum landing weight is 247,000 lb. Communications equipment includes UHF, HF, VHF radios and satellite phone. The aircraft is also equipped with a Traffic Collision Avoidance System (TCAS) to assist with aircraft separation during air to air refueling (AAR) operations. The tanker can be equipped with four independent AAR hose reel systems. Two centerline AAR hose reel systems are located in the lower aft fuselage. Two optional under wing mounted AAR pods can be installed approximately 10 ft. from each wing tip. The redundant centerline hose-drogue AAR system is internally mounted on the centerline of the aircraft within a pressurized compartment. The wing pods can be removed for better fuel efficiency when not needed.

1. AAR Equipment.

When the removable wing pods are installed, the KC-707C is capable of extending up to four AAR hoses (three simultaneously) giving maximum redundancy and flexibility to receiver aircraft planners. The two wing pods can extend hoses simultaneously to refuel two fighter receiver aircraft at the same time. The long hoses of the dual centerline system are capable of being extended.
one at a time for refueling a single receiver. The second centerline hose reel is installed to provide maximum redundancy.

a. **Centerline AAR System.**

The centerline AAR system is comprised of two independent Sargent Fletcher FR300(T) refueling systems. Each system includes a 93-ft long hose. In full trail position, the hose extends approximately 80 ft. from the point at which it exits the aircraft to the drogue tip. The white refueling hoses have black markings that designate the refueling range and provide hose movement cues. The two hose reels are installed side-by-side and cannot be used simultaneously. The reels are hydraulically powered and operate independently, allowing for a truly redundant capability. Two J.C. Carter fuel transfer pumps per hose reel system provide fuel flow of up to 400 gallons per minute. Two in-line regulators provide fuel pressure regulation and surge suppression within the MA-4 couplings (50 ± 5 psi) from 0 to maximum fuel flow. The reels are controlled by a reel operator through a cockpit-mounted control panel that provides video coverage of the AAR area aft of the Omega 707 tanker.

b. **Wing Pod AAR System.**

The wing pod AAR System consists of 2 wing mounted Flight Refueling MK32B-501 AAR pods installed approximately 10 ft. from each wing tip. Each AAR pod has a 49.5 ft. hose and an MA-3 coupling. To achieve fuel flow after making contact, the hose must be pushed in 5 ft. and maintained within the refueling range.

2. **Refueling Altitude/Level and Speeds.**

a. **Centerline AAR System.** The AAR flight operations envelop is 5,000 ft. AGL - FL300 at 200-325 KIAS and FL300 – FL350 at 250 KIAS – 0.8M.

b. **Wing Pod AAR System.** The AAR flight operations envelop is 5,000 ft. AGL - FL350 at 250-325 KIAS.

3. **Maximum Transferable Fuel.**

The maximum fuel load is approximately 72,121 kg (159,000 lb.). Transferable fuel is dependent on sortie duration and takeoff conditions. A representative offload of 35,473 kg (76,000 lb.) is available for a 5 hr. flight, assuming a fuel burn rate of 6,109 kg/hr. (13,467 lb./hr.) and allowing for tanker IFR fuel reserves. With tanker wing flaps extended to 14 degrees, the fuel burn can be as high as 8,618 kg/hr. (19,000 lb./hr.).

4. **AAR Fuel transfer rate.**

a. **Centerline AAR System.**
The fuel transfer rate is approximately 1,215 kg/2,680 lb./400 gallons per min for either refueling system but depends on the receiver capacity to take on fuel.

b. **Wing Pod AAR System.**

The fuel transfer rate is 1,215 kg/2,680 lb./400 gal/min on each wing. This can be accomplished simultaneously for a total of 800 gal/min with two receivers.

5. **Regulated Fuel Pressure.**
 a. **Centerline AAR System**

Fuel pressure is regulated at the drogue’s MA-4 coupling to 50 ± 5 psi

b. **Wing Pod AAR System**

Fuel pressure is regulated at the drogue’s MA-3 coupling to 50 ± 5 psi

6. **Fuel Types Available for AAR:**

7. **Lighting.**
 a. **Centerline AAR System**

AAR status lights are mounted 6 ft. aft of the hose exit point on the aircraft centerline. The lights signal the following to the receiver pilot:

 Prior to contact
 - Steady Red: Do not make contact.
 - Amber: Tanker ready for contact.

 Following contact
 - Green: Fuel is flowing from the hose reel to the receiver
 - Amber: Hose is not within designated refueling range (no fuel flow).
 - Flashing or Steady Red: Breakaway.
Aircraft undersurfaces are illuminated by floodlights. The drogue canopy is fitted with luminous light sources. The hose is white marked with 4 black bands spaced at 3 m (10 ft.) intervals. The 20 ft. refueling range has additional bands spaced at 2 ft. intervals.

b. Wing Pod AAR System

Tanker aircraft lighting is illustrated at Appendix 2. AAR signal lights are located at the base of the pod tunnel and consist of 2 each (one for redundancy) red, amber and green lights. Light signals are as follows:

- **Steady Red**: Do not make contact or, if in contact, remain in contact and await further instructions.
- **Steady Amber**: Tanker ready for contact.
- **No Lights**: If not in contact: do not make contact.

If in contact and within the refueling range: fuel either not flowing or flowing at less than 50 gal/min. (Note. This is a normal indication for dry contacts).
Steady Green Fuel flowing > 50 gal/min. (Note. Green light may flash on/off when topped off indicating fuel transfer = fuel burn).

Flashing Amber Hose pushed in < 25 ft. from the fully stowed position. (Note. Fuel transfer will cease if the hose is pushed in further than 23 ft. from the fully stowed position).

Flashing Red Disconnect and move to echelon left. (Note. If the red pod light is accompanied by the illumination of the tanker’s lower beacon, breakaway and move to nearest echelon).

The drogue canopy is fitted with 4 small lights and reflective tape.

Infra-red flood lighting is available upon request.

8. **Mark facilities.**

Aircraft are fitted with red and green rotating beacons, navigation lights, wing tip formation lights, underbelly lights and logo lights.

9. **RV aids.**

The aircraft has the following radio, navigation and RV aids:

a. VHF, UHF, HF radios and satellite phone.

b. GPS, VOR, DME, ADF and TACAN.

c. A/A TACAN, TCAS

10. **Fuel Load (at ISA)**

A max fuel load of approximately 150,000 lb. can be expected at ISA with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

11. **Fuel Load (at ISA + 10 degrees C)**

A max fuel load of approximately 145,000 lb. can be expected at ISA + 10 degrees C with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

12. **Average Fuel Burn Rate**

14,000 lb. per hour for planning purposes.
13. **Nominal Average Reserve.**
 10,000 lb. fuel reserves.

14. **Dimensions.**
15. **Hose Markings.**

a. Centerline System.

![Diagram of Centerline AAR Hose](image)

Omega KC-707A and KC-707C Centerline AAR Hose
The hose is white with black markings to provide maximum contrast during all lighting and weather conditions

Figure A-3

b. Wing Pod System.

![Diagram of Wing Pod System](image)

The basket uses a canvas canopy that carries 12 SRDLAC 121 ASS beta lights

Figure B-4
Tanker Information

Three Pratt & Whitney JT9D-59A engines power the Omega KDC-10 aircraft. Maximum takeoff weight is 556,000 lb. with a maximum fuel load of 243,000 lb. Maximum landing weight is 403,000 lb. Communications equipment includes UHF, HF, VHF radios and satellite phone. The aircraft is also equipped with a Traffic Collision Avoidance System (TCAS) for collision avoidance during rendezvous (RV) procedures. The tanker is equipped with a two-point air to air refueling system, one located under each wing. This aircraft is fully RVSM compliant.

1. AAR Equipment.

The AAR system is comprised of two independent Cobham 909 wing refueling systems. Each system includes a 79-ft long hose.
2. **Refueling Altitude/Level and Speeds.**

AAR height band is sea level to FL 350; speed range is 200 KCAS to 300 KCAS.

3. **Maximum Transferable Fuel.**

Maximum fuel load is 110,223 kg (243,000 lb.). Transferable fuel is dependent on sortie duration and takeoff conditions. A representative offload of 53,534 kg (118,000 lb.) is available for a 5 hr. flight, assuming a fuel burn rate of 9,525 kg/hr. (21,000 lb./hr.) and allowing for tanker IFR fuel reserves.

4. **AAR Fuel transfer rate.**

Transfer rate is 1,215 kg/2,680 lb./400 gals per min at 50 psi for each refueling pod.

5. **Regulated Fuel Pressure.**

Regulated at the drogue’s MA-4 coupling to 55 ± 5 psi.

6. **Fuel Types Available for AAR:**

7. **Lighting.**

AAR status lights are mounted in vertical rows on both sides of the AAR wing-tip pods. Lights are colored red, amber and green. The lights are capable of covert symbols for night vision goggles. Light colors have the following meaning:

Prior to contact

<table>
<thead>
<tr>
<th>Light</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady Red</td>
<td>Do not make contact.</td>
</tr>
<tr>
<td>Amber</td>
<td>Tanker ready for contact.</td>
</tr>
</tbody>
</table>

Following contact

<table>
<thead>
<tr>
<th>Light</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Fuel is flowing from the pod to the receiver aircraft at a rate greater than 50 gal/min</td>
</tr>
<tr>
<td>Flashing or Steady Amber</td>
<td>Hose is not within designated refueling range (no fuel flow).</td>
</tr>
</tbody>
</table>
Green and Flashing Amber Hose pushed in between the minimum refueling range and 5 ft. aft of the minimum refueling range, receiver too close.

Flashing or steady Red Breakaway.

The drogue canopy is fitted with 12 Beta lights and reflective tape.

8. **Mark facilities.**

Aircraft are fitted with strobe lighting, red/green rotating beacons, navigation lights, pod illumination lights (located in the wing root), under horizontal stabilizer illumination lights, and logo lights.
9. **RV aids.**

 The aircraft has the following radio, navigation and RV aids:

 a. VHF, UHF, HF radios and satellite phone.

 b. VOR, DME, ADF and TACAN.

 c. A/A TACAN, TCAS

10. **Fuel Load (at ISA)**

 A max fuel load of approximately 245,000 lb. can be expected at ISA with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

11. **Fuel Load (at ISA + 10 degrees C)**

 A max fuel load of approximately 240,000 lb. can be expected at ISA + 10 degrees C with a 10,000’ runway, 1,500’ MSL pressure altitude and with typical aircraft configuration.

12. **Average Fuel Burn Rate**

 19,000 lb. per hour for planning purposes.

13. **Nominal Average Reserve**

 10,000 lb. fuel reserves.

15. Hose Markings.

Omega KDC-10/MPTT Wing Pod Hose Markings
The hoses are black with white markings.

Figure D-6

Note: Hose diameter & drogue not to scale.

23 May 2018
Annex E to Organizational SRD - Omega

Tanker/Receiver Clearance and Technical Compatibility

This annex provides aerial refueling clearance and technical compatibility information between Omega tankers and probe equipped receivers.

<table>
<thead>
<tr>
<th>Receiver Country</th>
<th>Receiver Aircraft</th>
<th>Omega KC-707A</th>
<th>Centerline HDU</th>
<th>Omega KC-707B</th>
<th>Wing Pods</th>
<th>Omega KC-707C</th>
<th>Wing Pods</th>
<th>Omega KDC-10</th>
<th>Wing Pods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>F/A-18A/B</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>F/A-18E/F</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>EA-18G</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
</tr>
<tr>
<td>Canada</td>
<td>CF-188A/ CF-18A</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>CF-188B/ CF-18B</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>Finland</td>
<td>F-18C/D</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>Italy</td>
<td>AV-8B</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
</tr>
<tr>
<td>Kuwait</td>
<td>F-18C/D</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>Malaysia</td>
<td>F/A-18D</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>Spain</td>
<td>EF-18A+/B+</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>Sweden</td>
<td>AV-8B</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>KDC-10</td>
<td>C3</td>
</tr>
<tr>
<td>Switzerland</td>
<td>F/A-18C/D</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Tornado GR4A</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
<tr>
<td>United States</td>
<td>USAF CV-22</td>
<td>KC-707A</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>C3</td>
<td>KDC-10</td>
<td>C3</td>
</tr>
<tr>
<td></td>
<td>NASA F/A-18</td>
<td>KC-707A</td>
<td>Y</td>
<td>C3</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>KDC-10</td>
<td>Y</td>
</tr>
</tbody>
</table>

Key

- **Y**: Yellow highlight tanker/Receiver combination has technical compatibility but no active clearance.
- **C1**: Tanker/Receiver combination has Category 1 (with significant restrictions) Clearance.
- **C2**: Tanker/Receiver combination has Category 2 (with restrictions) Clearance.
- **C3**: Tanker/Receiver combination has Category 3 Clearance.
- **O**: Orange highlight-technical compatibility is unknown; IT has not yet been assessed.
- **R**: Red highlight-technical compatibility is assumed to not exist with given equipment.